Graphs with edge-preserving majority functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Majority Domination Edge Critical Graphs

This paper deals the graphs for which the removal of any edge changes the majority domination number of the graph. γM -critical edges, γM -redundant edges, γM -durable graphs and γM -critical graphs are studied. Further, majority domination critical edges and majority domination critical graphs are characterized.

متن کامل

Signed edge majority domination numbers in graphs

The open neighborhood NG(e) of an edge e in a graph G is the set consisting of all edges having a common end-vertex with e and its closed neighborhood is NG[e] = NG(e) ∪ {e}. Let f be a function on E(G), the edge set of G, into the set {−1, 1}. If ∑x∈NG[e] f(x) ≥ 1 for at least a half of the edges e ∈ E(G), then f is called a signed edge majority dominating function of G. The minimum of the val...

متن کامل

Detachments Preserving Local Edge-Connectivity of Graphs

Let G = (V + s,E) be a graph and let S = (d1, ..., dp) be a set of positive integers with ∑ dj = d(s). An S-detachment splits s into a set of p independent vertices s1, ..., sp with d(sj) = dj , 1 ≤ j ≤ p. Given a requirement function r(u, v) on pairs of vertices of V , an S-detachment is called r-admissible if the detached graph G satisfies λG′(x, y) ≥ r(x, y) for every pair x, y ∈ V . Here λH...

متن کامل

Edge-splittings preserving local edge-connectivity of graphs

Let G = (V + s, E) be a 2-edge-connected graph with a designated vertex s. A pair of edges rs, st is called admissible if splitting off these edges (replacing rs and st by rt) preserves the local edge-connectivity (the maximum number of pairwise edge disjoint paths) between each pair of vertices in V. The operation splitting off is very useful in graph theory, it is especially powerful in the s...

متن کامل

Holant Problems for Regular Graphs with Complex Edge Functions

We prove a complexity dichotomy theorem for Holant Problems on 3-regular graphs with an arbitrary complex-valued edge function. Three new techniques are introduced: (1) higher dimensional iterations in interpolation; (2) Eigenvalue Shifted Pairs, which allow us to prove that a pair of combinatorial gadgets in combination succeed in proving #P-hardness; and (3) algebraic symmetrization, which si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1992

ISSN: 0012-365X

DOI: 10.1016/0012-365x(92)90033-c